EXONE SAND BINDER JET 3D PRINTING
ABOUT EXONE
About ExOne

ExOne is the pioneer and global leader in binder jet 3D printing technology. Since 1995, we’ve been on a mission to deliver powerful 3D printers that solve the toughest problems and enable world-changing innovations. Our 3D printing systems quickly transform powders – including metals, ceramics, composites and sand – into precision parts, metalcasting molds and cores, and innovative tooling solutions.

Learn more about ExOne at www.exone.com or on Twitter at @ExOneCo. We invite you to join with us to #MakeMetalGreen™
The ExOne Company | Overview
The global leaders in binder jet 3D printing for 20+ Years

- Founded
 - Began in 1995 as the 3D division of Extrude Hone
 - Around 270 employees worldwide
 - NASDAQ listed since 2013

- Machines & Services
 - Industrial-grade binder jet 3D printing systems and services
 - 3D printing solutions for sand, metal, ceramics and composites

- High-Value Parts
 - Sand molds and cores
 - Direct metal 3D printing
 - Direct ceramic 3D printing
 - 3D printed tooling solutions

- Industrial Markets
 - Foundries | Automotive
 - Aerospace | Defense | Medical
 - Energy | Heavy Equipment
 - Architecture | Construction

- Rapid Growth
 - 2018 Revenue: $65M
 - 3-year annual growth: 17%
 - Transitioning from R&D and prototyping to production
The ExOne Company | Locations

We are represented all over the world

Headquarters

The ExOne Company
127 Industry Boulevard
North Huntingdon, PA 15642
USA

ExOne GmbH
Daimlerstrasse 22
86368 Gersthofen
Germany

ExOne KK
161-5 Haneo
Odawara-shi, Kanagawa
Japan
The ExOne Company | Early Years
Highlights of an emerging technology leader

1995

The Vision
Extrude Hone creates the “ProMetal” division to develop 3D printing. Company founder Larry Rhoades sees the potential of the new technology.

1996

The Patent
Extrude Hone obtains exclusive field-of-use license for patented 3D printing processes developed at the Massachusetts Institute of Technology (MIT).

1998

The Pioneer
Launch of the ProMetal RTS-300, the first metal 3D printer using binder jetting technology and the commercial realization of MIT’s invention.

2002

Entry into Sand
Extrude Hone launches the S15 sand printer using binder jet technology.

2003

A Workhorse
Extrude Hone launches the ProMetal R2, one of the company’s most robust and successful direct metal 3D printers using binder jet technology.

2005

Year of the Spin-off
Extrude Hone launches two new printers, the S-Print sand printer and X1 Lab metal printer and is sold to Kennametal. The assets of the 3D printing business are transferred to a newly created entity: “The Ex One Company.”
The ExOne Company | A New Era
Highlights of an emerging technology leader

The XONE IPO
ExOne successfully completes its Initial Public Offering on Nasdaq, one of the most successful IPOs of the year. Shares of XONE begin trading.

The Printers
Launch of four all-new printers: the S-Max, a new version of the S-Print, now a staple portfolio product, and the M-Print and M-Flex metal printers.

Breakthrough R&D
ExOne begins 3D printing full-density single alloy metals without infiltration – a game-changing technology breakthrough.

Waves of Sand
ExOne launches three new sand printers, including a new S-Max and S-Print models, continuing its market share gains in sand 3D printing.

The Next Generation
ExOne launches the S-Max Pro production sand 3D printer and the X1 160PRO, the company’s tenth metal printer and the industry’s largest commercially available metal binder jetting system.

Unexpected Change
Rhoades dies unexpected and ExOne is purchased by a company wholly owned by S. Kent Rockwell, who has led the company ever since as Chairman of the Board of Directors.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>The XONE IPO begins trading.</td>
</tr>
<tr>
<td>2010-2013</td>
<td>ExOne successfully completes its Initial Public Offering on Nasdaq, one of the most successful IPOs of the year. Shares of XONE begin trading.</td>
</tr>
<tr>
<td>2013</td>
<td>Breakthrough R&D — ExOne begins 3D printing full-density single alloy metals without infiltration — a game-changing technology breakthrough.</td>
</tr>
<tr>
<td>2014</td>
<td>Waves of Sand — ExOne launches three new sand printers, including a new S-Max and S-Print models, continuing its market share gains in sand 3D printing.</td>
</tr>
<tr>
<td>2019</td>
<td>The Next Generation — ExOne launches the S-Max Pro production sand 3D printer and the X1 160PRO, the company’s tenth metal printer and the industry’s largest commercially available metal binder jetting system.</td>
</tr>
</tbody>
</table>

© 2020 The ExOne Company
ExOne Delivers

Experienced provider of metal binder jetting systems

SHIPPING SOON | The X1 160 Pro™

Our tenth and largest metal 3D printer
Build Dimensions: 800 x 500 x 400 mm
(31.5 x 19.7 x 15.8 in)
Announced: Formnext 2019 | Delivery: 2H 2020

ExOne Machine History

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Build Area Dimensions*</th>
<th>Sand Volume</th>
<th>Metal Volume</th>
<th>Composite Volume</th>
<th>Launch Year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>Metal</td>
<td>Ceramic</td>
<td>Composite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>InnovaPro*</td>
<td>X</td>
<td>4.3 in</td>
<td>0.7 in</td>
<td>3.6 in</td>
<td>7.9 in</td>
</tr>
<tr>
<td>20</td>
<td>X1 160Pro*</td>
<td>X</td>
<td>3.1 in</td>
<td>5.1 in</td>
<td>3.8 in</td>
<td>14.1 in</td>
</tr>
<tr>
<td>19</td>
<td>S-Max Pro</td>
<td>X</td>
<td>7.0 in</td>
<td>3.3 in</td>
<td>2.2 in</td>
<td>10.9 in</td>
</tr>
<tr>
<td>18</td>
<td>X1 25Pro</td>
<td>X</td>
<td>1.7 in</td>
<td>4.0 in</td>
<td>4.6 in</td>
<td>15.4 in</td>
</tr>
<tr>
<td>17</td>
<td>Innova*</td>
<td>X</td>
<td>6.8 in</td>
<td>2.8 in</td>
<td>2.5 in</td>
<td>13.1 in</td>
</tr>
<tr>
<td>16</td>
<td>Innova</td>
<td>X</td>
<td>6.8 in</td>
<td>2.8 in</td>
<td>2.5 in</td>
<td>13.1 in</td>
</tr>
<tr>
<td>15</td>
<td>Exterial</td>
<td>X</td>
<td>6.6 in</td>
<td>4.7 in</td>
<td>2.5 in</td>
<td>12.7 in</td>
</tr>
<tr>
<td>14</td>
<td>S-Max Silicate</td>
<td>X</td>
<td>7.0 in</td>
<td>3.3 in</td>
<td>2.2 in</td>
<td>10.9 in</td>
</tr>
<tr>
<td>13</td>
<td>S-Max Phenolic</td>
<td>X</td>
<td>7.0 in</td>
<td>3.3 in</td>
<td>2.2 in</td>
<td>10.9 in</td>
</tr>
<tr>
<td>12</td>
<td>S-Print Silicate</td>
<td>X</td>
<td>3.1 in</td>
<td>4.0 in</td>
<td>3.5 in</td>
<td>12.3 in</td>
</tr>
<tr>
<td>11</td>
<td>M-Flex</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>10</td>
<td>S-Print Phenol</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>9</td>
<td>S-Print Furan</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>8</td>
<td>M-Print</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>7</td>
<td>S-Max Furan</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>6</td>
<td>S-Print</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>5</td>
<td>X1-Lab</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>4</td>
<td>R2</td>
<td>X</td>
<td>7 in</td>
<td>7 in</td>
<td>5 in</td>
<td>45.5 in</td>
</tr>
<tr>
<td>3</td>
<td>S15</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>2</td>
<td>R10</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
<tr>
<td>1</td>
<td>RTS-300</td>
<td>X</td>
<td>15.7 in</td>
<td>9.0 in</td>
<td>9.8 in</td>
<td>122.5 in</td>
</tr>
</tbody>
</table>

*Some systems may also have additional build box sizes and configurations.

The ExOne Company | Installed 3D Printers

Number of installed 3D printers worldwide

AMERICA

<table>
<thead>
<tr>
<th>Country</th>
<th>Metal</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>90</td>
<td>29</td>
</tr>
<tr>
<td>Canada</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Mexico</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

ASIA

<table>
<thead>
<tr>
<th>Country</th>
<th>Metal</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>China</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>India</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Singapore</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

EUROPE

<table>
<thead>
<tr>
<th>Country</th>
<th>Metal</th>
<th>Sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>France</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Great Britain</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Poland</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

© 2020 The ExOne Company

* sold machines as of Q2 2020
ExOne has a growing number of collaborations that enable us to develop binder jet technology faster. These relationships, often made with customers, help us develop faster by working with us in a variety of areas:

- Materials
- Software
- All-New Applications
- Optimizing Applications
- Research Studies
- Binder Jetting Processes
- Binder Jetting Accessories
OUR CORE TECHNOLOGY
Initially developed at the Massachusetts Institute of Technology in the early 1990s, ExOne obtained the exclusive license to this inkjet-in-powder-bed approach in 1996. Two years later, in 1998, ExOne launched the market’s first commercial binder jet metal 3D printer, the RTS-300.

Definition: A method of 3D printing in which an inkjet print head quickly deposits a bonding agent onto a thin layer of powdered particles, either metal, sand, ceramics or composites. This process is repeated, layer-by-layer, using a map from a digital design file, until the object is complete.

For metals, this process creates a “green” part that is then cured, or dried, in an oven. The part is then “depowdered” or removed from the powder bed and cleaned before final sintering in a high-temperature furnace, where the particles fuse together.
Binder Jetting | Overview

Patented in 1993 by Massachusetts Institute of Technology

POWDER
- Sand, Metal, Ceramics, Composites

BINDER
- Liquid binder adheres powder and layers together

PRINT EACH LAYER
- Layer of powder is spread into the print bed
- Industrial printhead lays down binder fast sweeps.
- Recoater dries layer and lays down fresh powder
- Process is repeated until the part is complete and ready for post-processing.

CORE BENEFITS
- High processing speeds
- Scalable, large systems
- Small or large parts
- Many materials
- Low operating cost
- Easy to operate

AM Power Forecast

<table>
<thead>
<tr>
<th>2018</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>31%</td>
</tr>
<tr>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>78%</td>
<td>57%</td>
</tr>
</tbody>
</table>

- Binder Jetting Technology
- Metal Fused Deposition Modeling
- Directed Energy Deposition
- Electron Beam Powder Bed Fusion
- Laser-based Powder Bed Fusion
Liquid binder is applied to a layer of powder to form high-value parts and tooling.

Binder Jetting | 3D Printing Process Overview

1. **Digital File Prep**
2. **Machine & Material Prep**
3. **3D Printing**

 - Powder is deposited.
 - Inkjet applies binder.
 - Each layer is printed fast.
 - Powder is recoated.
 - The process repeats.
 - 3D printing is complete.

Next Steps Depend on Application and Specific Materials

- Sand molds & cores → Depowder → Cure optional
- Sand tooling → Depowder → Coat or Infiltrate
- Metal and ceramics → Cure → Depowder → Debind & Sinter

ITERATIVE PROCESS WITH BIG PAYOFFS
ExOne | Binder Jetting Technology

Binder is selectively applied to a thin layer of sand, layer by layer, to form parts.

START LAYER
The recoater applies the first thin layer of powder – either sand, metal, ceramics or another material – into the print area or job box.

INKJET BINDER
A gantry of industrial print heads selectively applies binder to the powder to bind particles together where desired.

FAST LAYER SPEEDS
With a full sweep of print heads, a binder jet 3D printer can complete a full layer very quickly. This is one of the core benefits of binder jetting compared to other 3D printing methods.
Precise recoating of sand, and application of binder, are key for quality parts

RECOATING
This is a critical step in the binder jetting process, when the recoater lays down the next layer of powder. It must be precisely and compactly applied to deliver a high-quality precision part.

RINSE AND REPEAT
Once the next powder layer has been applied to the print area, the stage has been set for the next layer of binder. This recoating-and-binding sequence is repeated until the part is complete.

POST PROCESSING
Once the job is complete, the part is removed from the bed of sand and may need to be cured in an oven or microwave, depending on the sand and binder selected. Metal parts need an additional step of sintering to fuse the particles together.
Dropping inkjet into a bed of powder takes extreme engineering and experience to control.

Among the Challenges

- Precisely jetting fine droplets of binder fluid into a bed of powder where particles are not necessarily the same size and shape (not perfect rounds, D50 variations) is challenging in X, Y and Z.
- Ink must be dropped precisely in the X and Y directions and not bleed in the powder.
- Ink must seep vertically around various particle sizes and shapes (depending on material) to a controlled Z-depth.
- Powder must be spread on top of existing print layers to a controlled depth across the entire build area and compacted tightly for green-part density.
- Binder must cure between layers to prevent spreading new particles on wet particles.
- The process must be repeatable and deliver consistent results across the entire build area.

Learn More
www.exone.com/binderjetting
ExOne | We Turn Powder into Parts
Binder jetting a wide range of powder materials

POWDER MATERIALS WE PROCESS

SAND
Industrial Sands for metal casting
EX: Silica sand, ceramic sands, and more ...

METAL
Ultra-fine metal MIM powders
EX: 316L, 304L, 17-4PH, and more ...

CERAMICS
Wide variety of ceramic powders
EX: Silicon carbide and more ...

COMPOSITES
Industrial-grade composites
EX: Tungsten Carbide Cobalt and more ...
ExOne | Binder Jetting Materials

20+ qualified 3D printing powders plus another 25 R&D materials

ExOne Binder Jet 3D Printing Materials

<table>
<thead>
<tr>
<th>3D Printers</th>
<th>sands</th>
<th>ceramics</th>
<th>composites</th>
<th>100% metals</th>
<th>build volume</th>
<th>applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 160Pro</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>XL</td>
<td>XL - Serial Production Low or High Volumes</td>
</tr>
<tr>
<td>X1 25Pro</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>L</td>
<td>L - MIM-Like Parts</td>
</tr>
<tr>
<td>Innovent+ or Pro</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>S/M</td>
<td>S/M - Prototypes</td>
</tr>
<tr>
<td>M-Flex</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>L</td>
<td>L - Prototypes</td>
</tr>
<tr>
<td>S-Print</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>XL</td>
<td>XL - Molds & Cores</td>
</tr>
<tr>
<td>S-Max</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>XXL</td>
<td>XXL - Production Low or High Volumes</td>
</tr>
<tr>
<td>S-Max Pro</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>XXL</td>
<td>XXL - Production</td>
</tr>
</tbody>
</table>

TWENTY+ QUALIFIED 3D PRINTING POWDERS

- Natural and Synthetic Sands
- Aluminum, Carbon, Silicon Carbide, Tungsten Carbide Cobalt
- 316L Stainless, 450 Stainless, Boron Carbide w/Metallics, Silicon Carbide w/Metallics, Tungsten w/Bronze

SUSTAINABLE MANUFACTURING TECHNOLOGY

Plus, another 25 R&D materials — including aluminum and more
Binder Jetting | Print, Pour and Produce
A flexible array of materials for direct printing complex, high-value parts and tooling
Binder Jetting | Four Primary Application Categories

Binder Jetting delivers complex, high-value parts faster, with a dramatic reduction in waste.

- **3D sand molds and cores for metal casting**
 Complex molds and cores in days instead of weeks and months. Pattern-less production for sandcasting.

- **Direct metal 3D printing**
 Custom or mass production of complex single-alloy metal parts in hours versus weeks or months.

- **Direct ceramic 3D printing**
 3D printing greatly simplifies production of difficult to produce ceramic materials, such as silicon carbide.

- **Innovative 3D printed tooling solutions**
 Affordable, time-saving 3D printed tooling solutions for complex sacrificial, vacuum- and hydro-forming.
Binder Jetting | Transformational Benefits
Faster delivery, done-in-one pieces, new design freedoms and business flexibility

While all forms of 3D printing deliver some of these benefits, only binder jetting can deliver the throughput necessary to drive high-volume transformation.

- **SPEED**
 - High volumes at high speeds
 - Hours and days versus weeks and months
 - Rapid design iterations without $$ hard tooling
 - Beat competitors to market

- **WASTE REDUCTION**
 - Reduce or eliminates a wide range of wastes
 - Material waste
 - Hard tooling
 - Excess mfg processes
 - Inventory
 - Labor
 (reduce or eliminate excess assembly)

- **SAVINGS**
 - Saves costs by streamlining many forms of wastes
 - Waiting
 - Defects
 - Over-processing
 - Overproduction (no min. volumes)
 - Transportation and storage of parts to assemble

- **DESIGN FREEDOM**
 - Sustainable manufacturing without traditional limitations
 - **Consolidate parts** into monolithic parts
 - **Lightweight** part designs in trusted materials
 - New rigging, riser and other designs for metalcasting molds for **done-in-one pours**
 - All new innovative products not previously possible
 - Easy to iterate designs

- **FLEXIBILITY**
 - Some binder jet systems can print **many different materials** (industrial-grade or MIM powders)
 - Print or Pour: Binder jetting systems can **direct print final parts and tooling** for metalcasting & more
 - From prototyping to production: Binder jetting is currently **best suited for production volumes** and can also accommodate tooling
 - Enables decentralized manufacturing
ExOne | Eliminating Costly Waste

3D printing eliminates wasted time and resources, improving profitability

The ultimate lean tool
Binder Jet 3D printing addresses all of the eight types of waste recognized in lean business principles.

Waste is the root of all unprofitable activity, according to Kaizen lean philosophy.

Lean production is focused on reducing and eliminating waste.

- **Waiting**: No waiting for patterns, molds, pours or parts
- **Overproduction**: No minimum volume requirements
- **Overprocessing**: Reduce processing and assembly steps
- **Defects**: Eliminate stack-up errors, reduce defects
- **Motion**: Reduce unnecessary movement (assembly)
- **Inventory**: Eliminate many forms of inventory
- **Transportation**: Reduce shipping materials and parts
- **Skills**: Inefficient use of people doing low-value task
ExOne and Altair worked with a global automotive manufacturer to lightweight an existing structural truck part that holds cruise control sensors.

The existing part was redesigned with Altair Inspire and 3D printed with ExOne binder jetting in 316L stainless steel.

BENEFITS

- More than 45% lighter
- Fewer manufacturing processes to make
- Reduced the amount of welding required to affix the part to the vehicle structure
BINDER JETTING
CONSIDERATIONS
Dropping inkjet into a bed of powder takes extreme engineering and experience to control.

PRINTHEAD
- Binder must be dropped precisely in the X and Y directions, with controlled levels of bleeding and saturation in Z.

POWDER
- Powder particles vary in size and shape (not perfect rounds, particle size variations), and oxidation sensitivity, so powder needs to be characterized and conditioned prior to printing.

BINDER
- Droplet size and properties (chemistry, rheology, ink, glue and coating properties) must adapt to material characteristics. Must be able to “dry” quickly between layers for quick binding and application of next layers without wet powder smearing.

CONTROLS & MACHINE
- Tight controls of the mechanicals necessary to ensure precise powder dispensing, spreading and compact, as well as printing.

RECIPE
- Process must be optimized for all powder-binder combinations and deliver consistent and repeatable results across the entire build area.
Powder must be characterized and conditioned and work well with selected binder

UNDERSTANDING POWDER CHARACTERIZATION

- Important to understand the powder on which you’re printing for successful outcome
- While high-density metal is achievable today, you may want bonded, partially sintered, or infiltrated parts for some applications
- Particle size distribution D50 is also known as the median diameter of the particle size distribution. It is the value of the particle diameter at 50% in the cumulative distribution. It is one of the most important features of characterizing powder.
- Particle shape and surface textures
- Bulk and tap densities of the powder
- Rheology characteristics such as powder cohesiveness
Metal 3D Printing | Applications by Porosity

From large particles to infiltrated materials to dense, single-alloy, ultra-fine powders

<table>
<thead>
<tr>
<th>Product Forms</th>
<th>Coarse Powders</th>
<th>Fine Powders</th>
</tr>
</thead>
</table>
| Partially Sintered | Markets:
 - Sand casts molds
 - Low density single-alloy parts < 90%, Filters
 - Metal and ceramic matrix
 - Other course powder non-metallics
 - Castings - high density single-alloy
 - Tooling | Markets:
 - MIM
 - CIM
 - Investment castings
 - Machined parts
 - PM parts
 - Ceramic matrix
 - Cutting tools
 - Wear parts |
| Infiltrated | Bonded | Infiltrated |
| Highly Sintered (Coarse) | Partially Sintered | Highly Sintered |

© 2020 The ExOne Company

28
Many binders are proprietary to manufacturers and play a critical role.

CHEMISTRY REQUIREMENTS
- Compatible with jetting module
- Compatible with powder
 - Must wet powder while limiting bleeding and seeping to desired depth for stitching
 - Must not ruin powder (like acid/rust)

SAFETY
- Safe to handle, ship and dispose of or recycle
- Pure or clean.
 - Filtered below 3 microns
 - DI / Distilled Water

BINDER RHEOLOGY
- Viscosity
- Surface Tension

BINDER PROPERTIES
- Open Time
- Droplet Formation Time
- Stability (doesn’t change over time)
- Low or no foam

COATING PROPERTIES
- Film Former
- Matrix Former

INK PROPERTIES
- Detergency
- Adhesive to Surface
- Cohesive to Self
- High-Temperature Functioning
Different binder jet approaches to powder and binder management

Original Approach

- Important to understand different designs and how they impact powder management, cleanliness (a serious consideration with powder) as well as impact on speed and other factors.
- Important to consider control systems, sensors, part wear, waste management, recyclability features, accessibility/greenhouse and more.

New Approach

- TRIPLE ADVANCED COMPACTION TECHNOLOGY
- PRINT HEAD
- Ultrasonic Dispenser
- Sprayhead Comparator
- Build plate starts level
- Build plate descends as layers are 3D printed
- Build Part
- Powder Bed
- Binder

Diagram:

1. Original Approach Diagram
2. New Approach Diagram

© 2020 The ExOne Company
Users can tap high-throughput 3D printing benefits with binder jetting

SAND BINDER JET 3D PRINTING
- The sand printing process and recipes are highly plug and play with little adjustment required
- This process is ready for volume production

METAL BINDER JET 3D PRINTING
- Currently, binder jetting for metals is an iterative design process, where 2-3 prints may be necessary to dial in the parameters. This is largely due to sintering dynamics.
- However, after the iterative process is complete, you can tap the benefits of extremely high throughput and low cost binder jet 3D printing at scale
- Software companies such as ANSYS and Materialise are working to develop software that predicts sintering characteristics and automatically scales and makes recommendations for quality results with less or no iteration

Part: Impeller
Quantity: 400
Build time: 24 hours
Material: 316L
SAND 3D PRINTING
Sand 3D Printing | History
A technology that is now mature and ready for full plug-and-play production

READY FOR PRODUCTION
- Large systems
- High speeds, throughput
- Binder flexibility
- 24/7 Operations
- Automated desanding
- Plug-and-play performance
- Machine-to-machine integration
- Smart monitoring and remote controls
- Inorganic binding for low-emission, aluminum-friendly casting

INTRODUCTION
- Early 2000s
 - Low-production prototyping
 - Medium production specialty castings

GROWTH
- 2010-2020
 - Consolidated core production
 - Production of lightweight aluminum castings at volume

MATURITY
- Production Era
 - Customers executing serial production today

DECLINE
Sand 3D Printing | ExOne Leadership

We are the market share leader in binder jet 3D printers for sand and ceramic media

BINDER JET 3D PRINTERS
- S-Print, a reliable entry-level system
- S-Max, a large and reliable double job box system
- S-Max Pro, our fastest and smartest large sand 3D system

APPLICATIONS
- Sand molds and cores for sandcasting, a metal casting process that uses sand as the mold material
- 3D printed sand tooling, including innovative washout tooling and tooling for vacuum- and hydro-forming

SUPPORT SERVICES
- Comprehensive implementation and training
- 3D printed parts on demand – molds, cores, tooling
- OneCast – 360° services for 3D sandcasting
- Design for Additive Manufacturing (DfAM) services
- Custom development for additive manufacturing programs

SAND 3D MOLDS AND CORES FOR METALCASTING

Complex molds and cores in days instead of weeks and months. Pattern-less production for metal casting.

INNOVATIVE 3D PRINTED TOOLING SOLUTIONS

Affordable, time-saving 3D printed tooling solutions for complex sacrificial, vacuum and hydroformed tooling needs.
Sand 3D Printing | Transformational Benefits
Faster delivery times, done-in-one pours and new design freedoms

Benefits for OEMs and foundries. Deliver final done-in-one castings in hours or days, instead of weeks. Save money on patterns, molds and labor. New opportunities in design and services.

SPEED
Fast Delivery Times
- Deliver molds and cores within hours or days. Compared to weeks and months for traditionally manufactured molds and cores
- Regardless of part complexity

SAVINGS
- Eliminate patterns, molds and labor
- No physical inventory, easy digital storage

NO PATTERN STORAGE
No storage of patterns or molds for core shooters needed
- No repair is ever needed for an overused or degraded pattern or mold.
- No more repairing cores after extraction from core shooters

RAPID DESIGN CHANGES
- Design iterations can be executed extremely quickly without having to scrap existing patterns or create new patterns and molds for core shooters
- This saves time and money and reduces waste. Ultimately, it can result in better designs without limitations and compromises

EXCEPTIONAL DESIGN FREEDOM
- For both part design and mold package, delivering high-quality final parts
- 3D printing offers design freedoms in both the part design and also the rigging and riser design, which can deliver a higher quality casting
- 3D printing allows for hyperbolic sprues, additional vents and sand mold and core designs that are more compatible with desirable low-pressure pouring with no extra cost
Sand 3D Printing | Speed & Quality Improvements

New designs are now possible for metal casted products as well as sand molds and cores

Digital Technology Drives out Defects Faster

<table>
<thead>
<tr>
<th>Analog Process</th>
<th>Digital Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to First Pour</td>
<td>Time to First Pour</td>
</tr>
<tr>
<td>Time to Delivered Part</td>
<td>Time to Delivered Part</td>
</tr>
</tbody>
</table>

Main Gear Box Transmission
First Pour = No defects, part delivered

SIKORSKY
A LOCKHEED MARTIN COMPANY

Done-in-One Pour (Aluminum)
SAND 3D PRINTERS
Sand 3D Printing | Product Overview
Binder jetting for sand molds, cores and new tooling options.

A fast, flexible, reliable and compact sand 3D printing machine. Delivering highly accurate complex parts from digital data since 2005.

MAIN SPECIFICATIONS
Build Box (L x W x H): 800 x 500 x 400 mm
Layer Heights*: 0.26 – 0.38 mm

<table>
<thead>
<tr>
<th>Binder Systems</th>
<th>Furan</th>
<th>CHP</th>
<th>HHP</th>
<th>IOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Build Rate*</td>
<td>up to</td>
<td>up to</td>
<td>up to</td>
<td>up to</td>
</tr>
<tr>
<td>39 l/h</td>
<td>17 l/h</td>
<td>15 l/h</td>
<td>25 l/h</td>
<td></td>
</tr>
</tbody>
</table>

A large and robust sand 3D printer known for reliable performance. Double job box option. Printing cold-hardening binders since 2010.

MAIN SPECIFICATIONS
Build Box (L x W x H): 1800 x 1000 x 700 mm
Layer Heights*: 0.26 – 0.38 mm

<table>
<thead>
<tr>
<th>Binder Systems</th>
<th>Furan</th>
<th>CHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Build Rate*</td>
<td>up to</td>
<td>up to</td>
</tr>
<tr>
<td>100 l/h</td>
<td>60 l/h</td>
<td></td>
</tr>
</tbody>
</table>

MAIN SPECIFICATIONS
Build Box (L x W x H)**: 1800 X 1000 X 700 mm
Layer Heights*: 0.26 – 0.38 mm

<table>
<thead>
<tr>
<th>Binder Systems</th>
<th>Furan</th>
<th>CHP</th>
<th>HHP</th>
<th>IOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Build Rate*</td>
<td>up to</td>
<td>up to</td>
<td>up to</td>
<td>up to</td>
</tr>
<tr>
<td>125 l/h</td>
<td>70 l/h</td>
<td>40 l/h</td>
<td>80 l/h</td>
<td></td>
</tr>
</tbody>
</table>

NEW

- Prototyping
- Rapid product development
- Short-run Production
- Prototyping
- Rapid product development
- Short-run production
- Prototyping
- Rapid product development
- Short-run production
- Continuous 24/7 production
- Processes all ExOne binders
- Serial Production

* Depending on material
** 400 mm height with box-in-box system
*** depending on Jobbox utilization, sand type, layer height, resolution & environmental conditions
ExOne | S-Print®

A fast, flexible and compact sand 3D printer for a full range of binders

- Prototyping and small series
- Small and compact size
- Can process all ExOne binder systems

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dimensions:</td>
<td>3270 x 2540 x 2860 mm (128.7 x 100.0 x 112.6 in)</td>
</tr>
<tr>
<td>Build Box:</td>
<td>800 x 500 x 400 mm (31.5 x 19.7 x 15.8 in)</td>
</tr>
<tr>
<td>Layer Heights:</td>
<td>0.26 - 0.38 mm (0.01 - 0.015 in)</td>
</tr>
<tr>
<td>Weight:</td>
<td>3500 kg (7716 lbs)</td>
</tr>
<tr>
<td>Supply Voltage:</td>
<td>400 V AC (±10%) 3ph/PE/N</td>
</tr>
</tbody>
</table>

Binder Systems:

<table>
<thead>
<tr>
<th>Binder</th>
<th>Furan</th>
<th>CHP</th>
<th>HHP</th>
<th>IOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Build Rate:*</td>
<td>up to 39 l/h</td>
<td>up to 17 l/h</td>
<td>up to 15 l/h</td>
<td>up to 25 l/h</td>
</tr>
<tr>
<td>Exhaust Air:</td>
<td>300 m³/h</td>
<td>500 m³/h</td>
<td>500 m³/h</td>
<td>300 m³/h</td>
</tr>
</tbody>
</table>

* depending on Jobbox utilization, sand type, layer height, resolution & environmental conditions
ExOne | S-Max®

A large and robust sand 3D printer known for reliable performance and high productivity

- Double Jobbox option
- For continuous 24/7 production
- Ideal for all cold hardening binder systems

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Dimensions: (L x W x H)</td>
<td>10400 x 3520 x 2860 mm (409.5 x 138.6 x 112.6 in)</td>
</tr>
<tr>
<td>Build Box: (L x W x H)</td>
<td>1800 x 1000 x 700 mm (70.9 x 39.4 x 27.6 in)</td>
</tr>
<tr>
<td>Layer Heights:</td>
<td>0.26 - 0.38 mm (0.01 - 0.015 in)</td>
</tr>
<tr>
<td>Weight:</td>
<td>8600 kg</td>
</tr>
<tr>
<td>Supply Voltage:</td>
<td>400 V AC (±10%) 3ph/PE/N</td>
</tr>
</tbody>
</table>

Binder Systems: | Furan | CHP
Max Build Rate:* | up to 100 l/h | up to 60 l/h
Exhaust Air: | 300 m³/h | 600 m³/h

* depending on Jobbox utilization, sand type, layer height, resolution & environmental conditions

Jobbox on motorized roller conveyor. Double job box option

Easy-to-use touchscreen. Industry 4.0 cloud connectivity optional

All-new automated industrial printhead
ExOne | S-Max Pro™

Built for Production. Our fastest and smartest large 3D printer for sand and ceramics

- Double Jobbox option (for standard jobbox) or Box in Box Jobbox for post-processing steps
- For continuous 24/7 production
- Can process all ExOne binder systems
- Industry 4.0 integration and cloud connectivity
- Real-time process control and increased fault detection capability via camera and app

NEW INNOVATIVE BOX-IN-BOX SYSTEM FOR POST PROCESSING

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>External Dimensions:</th>
<th>10400 x 3520 x 2860 mm (409.5 x 138.6 x 112.6 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Box*:</td>
<td>1800 x 1000 x 700 mm (70.9 x 39.4 x 27.6 in)</td>
</tr>
<tr>
<td>Layer Heights:</td>
<td>0.26 - 0.38 mm (0.01 - 0.015 in)</td>
</tr>
<tr>
<td>Weight:</td>
<td>8600 kg</td>
</tr>
</tbody>
</table>

Max Build Rate**: up to 125 l/h, up to 70 l/h, up to 40 l/h, up to 80 l/h

Binder Systems: Furan CHP HHP IOB

Exhaust Air: 300 m³/h 600 m³/h 600 m³/h 300 m³/h

* With Box-in-Box System 400 mm height

© 2020 The ExOne Company

* depending on Jobbox utilization, sand type, layer height, resolution & environmental conditions
S-Max Pro | Box-in-Box System

Higher machine utilization

Removable box-in-box system

- Leading to an improved performance
- Allowing quick and easy removal of the job immediately after printing
- Machine can start the next job directly → no more downtime of the machine
- Higher usability due to the lower depth of the jobbox
- Box-in-box format (mm): 1800L x 1000W x 400H
S-Max Pro | Box-in-Box System

Multi-binder capable

Removable box-in-box system

- Leading to an improved performance
- Enables printing of all ExOne binder systems (Furan, CHP, HHP, Inorganic)
- Easy Box adaption to different binder systems
- Options:
 - integrated desanding
S-Max Pro Enabled for Industrial AM production

Benefits delivered by Siemens Technology

- S-Max Pro (2019) first ExOne 3D printing system featuring Siemens technology
- Digital Twin helped speed software development and testing without physical machine: 30% less engineering efforts
- Integrated hard- and software approach by Siemens: Controls, Drives, HMI, Monitoring systems, Energy Management
- MindSphere © Siemens enabled ExOne to offer new cloud-based services such as Scout app
- Siemens Edge Computing for field data processing highly desired by ExOne customers
MindSphere fueling ExOne Scout App

Machine monitoring based on the open IoT operating system by Siemens eases management and integration

Integration delivers:
- Real-time insights
- Quality assurance and analysis
- Relevant monitoring metrics and notifications
- Ease of automation integration and management
- App infrastructure enabled by MindSphere©
ExOne Quality System Enabled by Siemens

1. Process Monitoring based on Edge Computing
 - High volumes of data captured, analyzed, and converted to relevant information pushed to cloud
 - Self-learning algorithm evaluates layer pictures in real-time. Can detect defects such as scratches in the powder bed
 - Sends ad-hoc quality report

2. Cloud Monitoring with ExOne Scout App
 - Live information on active print times, fluid levels, temperature and humidity
 - Alerts for out-of-range performance issues or other issues

3. Process Data and Machine State Logging
 - Job-to-Job analysis
 - Long-term statistics on consumables, temperatures, errors – layer by layer
 - Report extraction

More AI features coming in future
SAND MATERIALS AND BINDERS
Sand 3D Printing | Binders and Materials

A technology that is now mature and ready for full plug-and-play production

- Organic
- Solvent
- Water
- Inorganic

<table>
<thead>
<tr>
<th>Binder Type</th>
<th>Print +</th>
<th>Microwave</th>
<th>Oven</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB001 – Furan</td>
<td>Steel, iron, non-ferrous metal, aluminum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB101 – Phenol (hot hardening HHP)</td>
<td>Steel, iron, non-ferrous metal, aluminum, bronze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB202 – Phenol (Cold hardening CHP)</td>
<td>Steel, iron, non-ferrous metal, aluminum, bronze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB901 – Inorganic</td>
<td>Aluminum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sand 3D Printing | Binders and Materials
Comparing binder system and molding material compatibility

<table>
<thead>
<tr>
<th>Binding System</th>
<th>Molding Material</th>
<th>Silica Sand</th>
<th>Synthetic Sand (Cerabeads)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FS001</td>
<td>FS003</td>
</tr>
<tr>
<td>FB001</td>
<td>(furan resin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB202</td>
<td>(phenolic resin–cold curing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB901</td>
<td>(Inorganic waterglass)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB101</td>
<td>phenolic resin hot curing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Standard Process**
- **Process Not Possible**
- **Possible Process**
- **Process is Not Performed**
SAND 3D PRINTING SERVICE
The ExOne OneCast Team has world-class knowledge of metal casting designs and processes for both traditional and 3D printing-enhanced operations.

360° SUPPORT
- Manufacturers
- Foundries
- Pattern Shops
- Designers

ExOne OneCast Services
- Design and Engineering Service
 - Requirements assessment
 - Complete mold and core package design
 - Experienced 3D rigging and riser design services
- Metal Casting Modeling Services
 - Fluid flow and solidification
- Sand 3D Printing Sourcing
- Foundry Sourcing
- Full Inspection Services
- Training
 - Digital mold package design
SAND 3D PRINTING CASE STUDIES
Case Study | German Automaker

Premier auto manufacturer saved 50%+ in costs and gained flexibility for casting design changes

Specifications
Customer: German Automaker
Part: Formula 1 transmission housing
Material Cast: Aluminum Alloy 356
Printed Volume: 200 L for complete mold package

Traditional Method
Method: Patterns and tools for sand core forming, lost foam model parts
Cost Per Lot: 15,000 - 20,000 €

ExOne Sand Printing
Print Media: Silica Sand/Furan Binder
Production Time: 4 hours
Cost Per Part: 1,500 €

Automotive manufacturer needed a way to quickly and economically produce complex prototypes. ExOne’s sand 3D printing process offered significant time and cost advantages over both traditional and other additive manufacturing technologies for delivering sand molds and cores for metal castings.
Case Study | Neenah Foundry

3D printed complex core saves thousands in tooling costs, reduces lead time by weeks

Specifications
Customer: Amerequip Corporation
Part: Single ductile iron casting for compact utility tractor component
Material: Ductile iron

Traditional Method
Method: Manufacture core box tooling
Lead time: 6 weeks

ExOne Sand Printing Method using the S-Max Printer
3D Sand Mold Printing and Casting
Print media: Silica Sand/Furan Binder
Lead time: completed less than 2 weeks
Core box modification cost savings: $5,000
Weight reduction: 2.2 lbs

Amerequip required a conversion of their 11-piece, lasercut welded assembly which in turn, would reduce weight, improve quality, and minimize cost through improved production efficiencies with a one-piece design. Amerequip turned to Neenah Foundry, which created the single ductile iron casting design to be made using a single low-cost core. Neenah used 3D printed cores produced at Hoosier Pattern on an ExOne's S-Max system.

2019 Casting of the Year, American Foundry Society
Case Study | Morel Industries
Complex digital core cuts lead time, saves thousands

Specifications
Part: Exhaust manifold core
Batch Size: 30
Part Size: 4 x 8 x 28 inch
Material: Gray iron

Traditional Method
Unique wooden pattern for each core. Hand setting to build core assembly.
Time: 5 weeks
Cost per Batch: $8,000

ExOne Sand Printing
Method Time: 2 weeks after CAD design
Cost: $1,200

Morel Industries needed a solution to eliminate the human error in the assembly of core boxes used with traditional wood and sand patterns. Working with a local pattern shop with CAD knowledge and expertise, Morel was able to combine 3 cores into 1 printable ExOne core with vents and intricate geometry for their customer. With ExOne's digital printing process, 3 cores were combined into 1, decreasing the scrap rate from 9% to 1%. Lead times were reduced by 60%. Costs were slashed by 85%.
Ceramic 3D Printing
Software being developed to codify and streamline design for binder jetting

- Inherent advantages for ceramics:
 - Print speed, print size, material choices and flexibility

- Application in many ceramic materials markets:
 - Reaction bonded / Siliconized Silicon Carbide (SiC) for optics, automotive, chemical, and high-temperature material industries
 - Tungsten Carbide / Cobalt (WC/Co) for wear parts and cutting tool industries
 - Oxide based ceramics for filters, electronics packaging, etc.
 - Prototyping and low quantity runs of CIM parts

- As binder jetting further develops for ceramics, enhancements for printing small particle size, sinterable ceramic powders will continue to create broader adoption. Published material property characterization data from large industrial players will also drive adoption throughout the industry.
NEW OPPORTUNITIES
3D PRINTED TOOLING
What is Washout Tooling?
A new form of 3D printed sacrificial tooling

A new and sustainable method of creating lightweight parts with trapped geometries, such as ducting, tanks, struts, mandrels and rocket shrouds.

With this ExOne-exclusive form of sacrificial tooling, a tool is 3D printed in sand or ceramic sand and then coated with a proprietary spray or a Teflon tape so that it can be used for layup of carbon- or glass-fiber thermoset composites.

After autoclaving, the tool can simply be washed out with tap water. This is possible because the binder used in the 3D printing process remains water soluble up to 180° Celsius or 356° Fahrenheit throughout the process.
The Core Benefits of Washout Tooling
A fast, easy-to-use, affordable form of sacrificial tooling

FAST
Eliminates long lead times needed for most other forms of sacrificial tooling. Quick removal of tool.

EASY
Washes out with tap water. No need for hot solvents, detergents, deflatable tools and complex tool removal.

PRECISE
Expansion of the tool is completely isotropic and controlled by the print media. Low or high CTE available.

SUSTAINABLE
The sand or ceramic sand media used in the process is reusable, making this tooling process sustainable.
Washout Tooling Industries

Choose a low or high CTE to manage expansion

Aerospace

We serve a wide range of customers in this market, including makers of UAVs, with tooling for parts.

- Ducting
- Engines
- Structural composites (Stiffeners, fly-away foam replacement, etc.)
- Pressure tanks

Automotive

We serve the NASCAR, Performance and Luxury automotive markets with tooling for a variety of parts.

- Ducting
- Tanks
- Structural composites
WASHOUT TOOLING PROCESS
Washout Tooling Process

Processes supported by washout tooling include:

- Hand/wet layup
- Pre-preg layup
- Filament winding
- Tape or fiber placement
Washout Tooling Process

Simple Water Washout > Final Part

Remove Tool with Tap Water

Recover and Reuse Sand Media

Final Fiberglass Part
Extreme Design Benefits
Choose a low or high CTE to manage expansion

- Novel designs printed in ends of mandrels to create longer mandrels
- Creates ability to manufacturer parts longer than the build volume (L > 800 mm)
- Minimizes shipping issues and potential damage to shipping long mandrels
- A lot of unexplored design possibilities
Integration with Metallic Hardware

Printed Cerabeads washout mandrel (Teflon wrapped) with integrated hardware
Comparing Washout Tooling Methods
High-quality manufacturing in our Saint Clairsville, Ohio, facility

<table>
<thead>
<tr>
<th>Technology</th>
<th>NRE Cost</th>
<th>Build Cost</th>
<th>Build Time</th>
<th>Tooling Req’d</th>
<th>Use Temp</th>
<th>Removal</th>
<th>CTE</th>
<th>Use Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder Jetting</td>
<td>$</td>
<td>$</td>
<td>Low</td>
<td>No</td>
<td>180°C</td>
<td>Tap water</td>
<td>Low or High</td>
<td>New technology</td>
</tr>
<tr>
<td>FDM (SSYS)</td>
<td>$</td>
<td>$$$$</td>
<td>Med</td>
<td>No</td>
<td>180°C</td>
<td>Hot solvent</td>
<td>High</td>
<td>New technology</td>
</tr>
<tr>
<td>Plaster / Castable Media</td>
<td>$$$</td>
<td>$</td>
<td>Low*</td>
<td>Yes</td>
<td>120°C</td>
<td>Breakout</td>
<td>Med</td>
<td>High Quantity, Legacy, inexpensive</td>
</tr>
<tr>
<td>Bladder Molding</td>
<td>$$$</td>
<td>$$$</td>
<td>High</td>
<td>Yes</td>
<td>>180°C</td>
<td>Deflate</td>
<td>High</td>
<td>High quantity, OML & IML control</td>
</tr>
<tr>
<td>Breakdown Tooling</td>
<td>$$$</td>
<td>$$$</td>
<td>High</td>
<td>Yes</td>
<td>>180°C</td>
<td>Multi-pc</td>
<td>High</td>
<td>High quantity</td>
</tr>
</tbody>
</table>
Washout Tooling Print Media

Choose a low or high CTE to manage expansion

ExOne binder jet machines 3D print traditional sand and ceramic sand media into a tool with a binder that remains water soluble up to 180° Celsius or 356° Fahrenheit throughout the process. Expansion is driven by the media, not the binder, and it’s isotropic (XYZ), resulting in high-quality results.

<table>
<thead>
<tr>
<th>Media</th>
<th>CTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica Sand</td>
<td>20 ppm/°C (11 ppm/°F)</td>
</tr>
<tr>
<td>Ceramic Sand</td>
<td>3 ppm/°C (2 ppm/°F)</td>
</tr>
</tbody>
</table>

3D Printed Form
Before Coating
Washout Tooling Coating Options
Prevent resin migration into the porous 3D printed tool form

ExOne offers two forms of proprietary spray coatings for its 3D printed tooling, in addition to Teflon tape wrapping. The blue coating remains water soluble up to 180° Celsius or 356° Fahrenheit while the green coating remains water soluble up to 132° Celsius or 270° Fahrenheit.
A PROMISING FUTURE
BINDER JET 3D PRINTING
Enabling Smarter, Sustainable Supply Chains

Binder Jet 3D is a serious tool to lightweight and consolidate parts, de-risk supply chains

- Fabricates objects with little to no waste, a dramatic improvement over traditional technologies
- Enables all-new lightweight designs that are not possible or affordable with traditional technologies
- Enables part consolidation that eliminates manufacturing processes and reduces energy consumption
- Eliminates need for hard tooling, enabling distributed manufacturing that shortens supply chains
Thank you!

The ExOne Company
127 Industry Boulevard, North Huntingdon, PA 15642
1-877-773-9663
www.exone.com